HowTo: Upgrade Scosche Rhythm+ Firmware

rhythmplus

The Scosche Rhythm+ is an optical BLE/ANT+ armband heart rate monitor that’s highly recommended by DC Rainmaker. There are many posts around the Internet which claim that it doesn’t have updateable firmware, but that’s not always the case. Prior to firmware V2.5, the Rhythm+ had to be sent back to Scosche for firmware updates, but if you’re lucky to have firmware 2.5+ installed, you can update the firmware yourself with your phone and Scosche’s Fitness Utility.

*** WARNING WARNING READ BEFORE UPDATING: Read all of the updates at the bottom of this article before attempting a firmware update. Sometimes, a unit has gotten bricked by the procedure, but apparently, it has been fixed in Version 2 of the app. Also, read the comments left by other users. It seems that the data in the newer firmware 3.0+ also causes issues with data corruption in certain apps.  Before starting a firmware update, make sure that your device is fully charged, because it can be rendered unusable if the battery dies during the procedure ***

The procedure is quick and easy. Pair the Rhythm+ to your phone and launch the Fitness Utility. You will be presented with the Attributes screen, which lists the current firmware version:

IMG_4795

If you have Firmware Revision 2.5 or higher, tap the Commands button, and you’ll be presented with this screen:

IMG_4794

Tap the Firmware Update Start button, and the utility will update you to the latest firmware.

I got a nice new feature when I upgraded mine to firmware 2.62. Now, after setting my HR Zone Min and HR Zone Max via the Fitness Utility, the LED on the Rhythm+ blinks blue when my HR is below HR Zone Min, purple when I’m between HR Zone Min & Max, and red when I’m above HR Zone Max. I guess if you only use ANT+, and want to save some battery life, you can turn off the BLE Radio as well, but I haven’t tried playing with any of the other functions yet, and I have no idea how you would turn BLE on again, since the app communicates via BLE.

Update 2016-07-11: Reader Atle posted below that v2.62 adds another function for iOS users … click the button on the unit once to start/stop music, and double click to advance tracks in the playlist. I wonder if this works on Android, as well.

*** 20170327: WARNING: I HAVE RECEIVED MULTIPLE REPORTS OF THEIR UNITS WITH NEWER FIRMWARE GETTING BRICKED BY APPLYING THE FIRMWARE UPDATE. IF YOU HAVE A UNIT WITH NEWER FIRMWARE >2.62, APPARENTLY, THE UTILITY IS BADLY DESIGNED, OR HASN’T BEEN UPDATED IN A LONG TIME, AND CAN CORRUPT UNITS WITH NEWER FIRMWARE. AT THIS TIME, I *DO NOT* RECOMMEND UPDATING YOUR UNIT IF IT HAS NEWER FIRMWARE. IF YOUR UNIT GETS BRICKED, CONTACT SCOSCHE CUSTOMER SUPPORT … IT IS THEIR FAULT IF THEIR SOFTWARE BRICKS YOUR UNIT ***

** 20170509: A reader below said: “If you see blinking Red-blue led so seems like bricked but don’t be upset just put on charge unit and the device will be reset.” Please leave a comment below if it works to resurrect your bricked unit ***

Update 2017-06-16: As reader Occamsrazor states below, the Fitness Utility has been updated to Version 2. The description on iTunes shows that it has some new features, but it’s rather cryptic. I was able to use it to update my 2.62 FW to 3.01. You no longer have to press a firmware upgrade button. If your unit is eligible for updating the firmware, it will automatically prompt you when you connect your device. The new app has several new undocumented functions. I tried to enter my birthday, height, etc, but it doesn’t seem to work. If anyone figures out the advanced features, please post below. Apparently, it’s possible to record a workout in the band itself, and then export a CSV file, but I can’t get any of the functionality to work. Also, there are some reports that the new version is a lot less likely to brick your unit, but YMMV. It worked OK for me.

Update 2018-01-09: 1) I’m not absolutely certain, but I feel that my Rhythm+ has gotten flaky since updating to v3.01 firmware. The heart rate is often very low or very high. I decided to try downgrading my firmware. If you are having issues, and want to try a different version of firmware, I have documented how to downgrade in a new article: HowTo: Downgrade Scosche Rhythm+ Firmware. 2) I was wrong above. You don’t need v2.62 firmware to get the feature that setting the Min & Max heart rates make your LED flash purple/blue/red when the heart rate is below Min/in between Min & Max/Max HR. v2.4 firmware actually supports that feature.

 

Next article: HowTo: Downgrade Scosche Rhythm+ Firmware

Mini Review: Linksys WRT1900AC

It infuriates me how so many WiFi routers are designed with inadequate cooling. I have a whole pile of routers that got flaky or crapped out after a few years due to overheating. The only ones that are still rock solid after years of continuous service are my WRT54Gs. My Linksys E4200 has been getting long in the tooth lately. On hot days, I need to blow a fan on it, and lately, even colder weather, it slows down to a crawl at random times and needs a reboot. I could try installing a big heatsink in it, but I thought maybe it was time for an upgrade to one of the fancier new technology routers. What most people don’t realize about the latest crop of router technology, such as AC3200, is that unless you upgrade your clients, you’re not going to get performance anywhere close to what these things can do. Most of the devices in my house are 2.4GHz 802.11n and can’t even handle MIMO, but smallnetbuilder had an article which showed that you can get a speed boost with 802.11n on a 802.11ac router. I figured I might as well future proof myself and look for a midrange AC router.

linksys-li-WRT1900AC-9-a

After lots of research on smallnetbuilder’s site, I settled on the Linksys WRT1900AC. This router, built by Belkin, is a nod to the venerable WRT54G, and is designed to be hacked with open source firmware. The specs are pretty good, even in the 2.4GHz band, which is often neglected these days, and I was particularly impressed with the speed of its NAS function, which vastly outperforms anything out there. It has a USB 3.0 port + a combo USB3.0/eSATA port on the back, and lightning fast storage performance. When I received it, I was impressed with the build quality. This thing is a beast! It looks like a WRT54G on steroids, and makes its predecessory look like a toy. Big & beefy and heavy. I specifically got the V1 because it has a built in cooling fan which kicks in only when necessary (which isn’t very frequent, due to its gigantic heatsinks). The later V2, also known as the WRT1200ACS, no longer has a fan. This is not going to be a full review of the WRT1900AC, but only a synopsis of my experiences trying to get decent 2.4GHz throughput out of it.

I really wanted to like the WRT1900AC. It is a thing of beauty, and I spent quite a few hours trying to tweak it, but to no avail. Despite the 90Mbps 2.4GHz LAN to WAN downlink throughput measured by smallnetbuilder, I was not able to get more than about 30Mbps downlink out of any of the devices in my house, even when sitting only a few feet from the WRT1900AC. This is only about half what I get out of my old E4200, which works as fast wirelessly as it does through Ethernet, maxing out at almost 60Mbps, which is the speed of my Time Warner cable service. No amount of tweaking over two days (about 6 hours of mucking with it) could speed up the 2.4GHz downlink performance. I scoured google for tweaks and even tried OpenWRT. I figured that I could figure out to get more speed out of it with OpenWRT’s tweakability, but it actually got slightly slower.

Although the speed with a very strong signal was only half as fast as my E4200, at the edges of my house, where the signal was weak, the WRT1900AC performed admirably, giving not only better throughput, but also being able to actually function at distances where the E4200 signal was completely dead. This left me in a dilemma, because the extended range is actually pretty useful to me. Also, for some reason, the storage performance came up quite short of what was tested by smallnetbuilder. I have a Seagate 2TB USB 3.0 drive, which is normally connected to a hacked Pogoplug E02 running Debian linux. The Pogoplug only supports USB 2.0, and doing a file copy across the network on Windows 8.1, I the maximum throughput I get is about 11MBps. Disappointingly, when attached directly to the USB 3.0 port on the WRT1900AC, the throughput topped out at a measly 4MBps. This was the last straw for me.

The 5GHz wireless performance on the other hand, was terrific. It easily saturated my 60Mbps downlink. But I can’t just switch to 5Ghz, because its range is too short in my house, and the signal drops out in some of my bedrooms. Also, not all of my devices support the 5GHz band. So, with a heavy heart, I decided to return the WRT1900AC. Just as I suspected, upgrading to the fancy 802.11ac router doesn’t necessarily help performance with 802.11n clients. In fact, looking at smallnetbuilder’s testing, lots of the latest and greatest routers put less emphasis on 2.4GHz performance, so if like me, you don’t have any 802.11ac clients, you should save your money and buy something cheaper. As for me, I’m going to try hacking a temperature-controlled fan into my old E4200, and see if that makes it more stable.

Review: Mobility Rev Bluetooth Heart Rate Monitor

I recently discovered the PCD Mobility Rev Bluetooth HRM on Amazon.com, for the ridiculously low price of $7.95 including shipping (currently also available on eBay for $9.95). This is a Bluetooth 4.0 (Bluetooth Smart/Bluetooth Low Energy) HRM with strap, for half the price of a replacement strap for a Garmin or Polar HRM! Despite the 1 star reviews on Amazon, I figured that if the HRM was total trash, I would still have a decent spare HRM strap. It arrived a few days ago, and I put it through its paces on a couple of workouts. I wasn’t expecting much, given the bad reviews, and was pleasantly surprised to find that it’s actually a decent piece of hardware.

Specifications

  • strap length: 70-120cm
  • battery life: 1800 hrs (5 yrs x 1 hr/day)
  • battery: CR2032
  • range: ~10 meters
  • waterproof: IPX7
  • operating temperature: -10C – 50C
  • weight: 47g (transmitter+strap)
  • SKU: LHX0021Q

The company seems to be out of business, as their website is dead: http://www.pcdphones.com

The receiver is a bit chunkier and clunky looking compared to my Garmin HRM:

hrmfront

Note how it uses industry standard metal snaps, spaced that the standard distance, so the receiver and strap are compatible with Garmin/Polar/Wahoo/etc.

hrmback

The Mobility Rev uses a CR2032 battery (included). The battery door has a rubber o-ring to seal out moisture from your sweaty chest. I don’t know how water resistant it is, however, and am not going to try immersing it. Unlike the Garmin, which requires a small Philips screwdriver to replace the battery, the Mobility Rev’s battery cover easily comes off with a twist of a coin.

The Mobility Rev strap (bottom) is the same quality and of similar design to my Polar strap (top):

hrmstrapfronthrmstrapback

I use the Polar strap with my Garmin HRM, because the fancy strap that it came with has rather sharp and hard edges that chafe during a long workout.

So far, I have taken the Mobility Rev HRM out for a 1.5 hour bike ride and a 3.5 mi trail run, using the Wahoo Fitness app on an iPhone 6, and it has worked quite well. Here are the metrics I use for evaluating wireless heart rate monitors:

  1. accuracy: Since this is a cheapo HRM, I’m not going to do detailed testing with graphs. At steady state, the heart rate reading is identical to that from my fingertip SpO2 meter. On my 1.5 hour bike ride, I didn’t bother to bring another HRM to compare against, but the heart rate readings looked consistent with my experience, and there were no dropouts or spikes, even when I was riding over very bumpy pavement. On my 3.5 mi trail run, I brought along my Garmin HRM, and did concurrent recordings. I was disappointed to find that during the first minute of recording, the Mobility Rev spiked up abnormally to 144 bpm before stabilizing at my true HR of 109 bpm. This phenomenon, however, is a regular occurrence with my optical HRM’s (Wahoo Rhythm+ and Garmin Forerunner 225 built-in). Since I was wearing two heart rate straps, making the sensor placement less than ideal, it’s possible that this glitch was due to poor contact with my chest. After this initial spike, it settled down, and had identical readings to the Garmin during the rest of the workout, deviating by 1 bpm on occasion, even when my heart rate was fluctuating, due to my switching back and forth between hiking and running. My Pyle strap often spikes up to unrealistically high HR’s when there is intense vibration from my running. The Mobility Rev displayed no such aberrant behavior. For the most part, I was impressed by the accuracy and consistency of its readings.
  2. signal stability: During use, the signal was rock solid and never dropped out.
  3. range: my iPhone 6 was able to reliably receive the signal 40 feet away from the HRM even while indoors.
  4. overall fit and finish: The plastic casing seems of decent quality, and the strap is of comparable quality to the Polar HRM strap.
  5. reliability: Since I have only had it for a day, I don’t yet know if it will crap out after just a few uses. I will update this article after more testing.

Using the free LightBlue Explorer iOS app, I found that it identifies itself as BLUETOOTH SMART HRM, and reports the following device information:

bthrminfo

The manufacturer string is Maxwell Guider. It’s a nice touch that it seems to support reporting of battery status, but I don’t have any partially dead batteries to test with, so I don’t know if it actually outputs anything besides 100% [Update: see below, it always outputs 100% even with bad batteries].

One caveat of the Mobility Rev HRM is that it only outputs heart rate, so you can’t use it for HRV analysis, which requires R-R interval data. I tried to use it with the Elite HRV app on my iPhone, and it wasn’t able to read any HRV data. As a cross check, I took a look at the raw heart rate data output, and found that it indeed only reports 8-bit heart rate and nothing else.  Most people, however, are only interested in heart rate, and won’t find this to be a problem.

I have only had the Mobility Rev BT HRM for a day, so I don’t yet know if it will stop working after only a short period of use. If there are any changes to its performance, I will update this article. Even if it does fail, I’ll still be happy to have an extra $8 Garmin/Polar/Wahoo/etc compatible strap.

Update 2015-11-24: After only 3 days of use, it died. I tried putting several new CR2032’s into it, and it was still dead. I was ready to write it off as a piece of junk until I finally found one that works. Now, it’s working perfectly again. I think the people who are reporting on Amazon that it connects inconsistently or fails after a couple of days are just suffering from weak cells. This device seems to need a higher voltage than others in order to function properly. The functional cell has an open circuit voltage of 3.25V, while another that reads 3.21V doesn’t work. This makes me question the manufacturer’s claim of 1800hrs battery life. Also, during this testing, I found that the Battery Level service is fake, and always outputs 100%. Some of the weak cells would actually operate it for a few seconds at at time before cutting out, and it still outputted a Battery Level of 100%.

 

Update 2015-12-03: I’ve used the Mobility Rev HRM for at least 8 hours of cycling and running workouts now, and the readings have been absolutely rock solid. No spiking up of HR during the start of a workout, no spiking up of HR during running, and no dropouts. The HR readings are totally glitch free. One problem I’ve had, however, is that sometimes, it’s a bit difficult to get the unit to wake up. I wetting the strap contacts usually helps. One time, I had it mounted upside down on the strap, and it woke up when I inverted it. I’m surprised that it seems to be sensitive to L/R, but unit is actually labeled for left & right sides on the back. In the meantime, the price dropped to $6 on Amazon, so I ordered a 2nd one to keep as a spare.